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ABSTRACT 
 
This paper introduces a new fully-automated method for identifying clusters in large event sets. The method uses a 
Delaunay tessellation to determine the clusters and initial membership, then applies an iterative K-medoid 
optimization to refine membership in the clusters until stability is achieved. The method is robust and 
computationally efficient, with performance improvement over standard K-medoid optimization from O(n2) to  
O(n log n), which is achieved by making use of the Delaunay tessellation neighbor connectivity information. It 
produces clusters that meet three key criteria: 1) for each cluster, each event is closer to the representative event for 
that cluster (the medoid) than to the representative events for nearby clusters, 2) for each member event in a cluster, 
there is a closest neighbor that is no further away than Dmax, 3) no event in a cluster is further than Dmax from any 
other event in the cluster. Dmax is a user-defined parameter that can be used to control the number and size of 
clusters. The basic algorithm consists of three steps. First, initial clusters are identified by forming a Delaunay 
tessellation for the entire set, then removing all edges longer than Dmax. Second, the initial clusters are sub-divided 
using a medial-axis subdivision algorithm until no cluster has a maximum event-to-event span greater than Dmax.. 
Third, given these groups, membership in the groups and K-medoid representatives for each are optimized in a  
hill-climbing iterative process. In most cases, this sequence produces excellent results, but we have found rare cases 
where the method can form poor clusters or event-to-cluster assignments. Hence we have added an additional clean 
up step that can break up clusters with a main body of members and a few outliers to merge the main body with a 
nearby cluster (if one is available), and that can re-assign an outlier member to another cluster if that cluster has 
nearby events to the outlier. 
 
The technique is demonstrated with a large set of ISC catalog events and results for various regions are examined. 
The number of clusters and cluster membership change with different values of Dmax are shown and results with 
and without the final clean up step are compared. 
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OBJECTIVES 

A standard method for clustering sets of seismic events is a fixed grid approach. While technically simple the 
approach has some undesired drawbacks. Among these the most notable are the complete disregard of spatial 
proximity and density information in choosing neighbors and the occasional occurrence of cluster representatives 
that lie extremely close to one another across their shared cluster boundary.  
 
Past indifference toward utilization of more traditional clustering techniques for use in identifying clusters of 
seismic events is most likely due to a perceived lack of necessity for such an approach; the perceived additional 
complexity involved with implementing the method; and possible performance degradation issues related to using a 
complex approach over a simple and fast method. The perceived lack of necessity for a different approach stems 
from the fact that the simple fixed grid method generally works even with the undesirable effects mentioned in the 
first paragraph above. If, however, a new approach could eliminate the drawbacks while both preserving 
performance and design simplicity, then perhaps the new method would be considered an acceptable replacement 
for the fixed grid approach. 
 
The remainder of this paper describes the proposed method and shows that leveraging capabilities already developed 
by SNL for the GNEMRE program will ensure that desired performance goals are easily met with very little 
additional complexity. 

RESEARCH ACCOMPLISHED 

Introduction 

Many technical fields such as spatial data mining and operations research are interested in the problem of clustering 
arbitrary unstructured geo-referenced data sets. Most of these spatial clustering techniques make use of data 
proximity. In these methods proximity is based on a selected Euclidean metric which attempts to capture the spatial 
autocorrelation and near association of neighboring spatial data. Two general approaches are typically followed to 
form the clusters: a) a bottom-up approach which agglomerates spatial points to form clusters based on their relative 
nearness to one another; and b) a top-down approach which attempts to partition a heterogeneous data set into 
smaller more similar groups. 
 
Of particular interest for clustering seismic events are top-down medoid-based clustering methods. In these methods 
the point representing an arbitrary cluster must be chosen from the set of events forming the cluster. Other methods 
include those based on discovering a mean, or average, location within the cluster to use as a cluster representative. 
Mean-based methods are generally more popular and possess fast solution algorithms of order O(n) time. However, 
the calculated mean representative locations are not necessarily near the cluster center when outliers are involved in 
the calculation and suffer many other statistical bias and consistency problems. A good description of the advantages 
and disadvantages of mean- and medoid-based methods can be found in Estivill-Castro et al. (2001).  
 
The medoid (or K-Medoid where K refers to the number of clusters) approach suffers two primary drawbacks. The 
first, which it shares with mean-based methods, is that the number of clusters must be defined in advance. The 
second is that for large data sets containing up to n points the solution times are of order O(n2). 
 
In this paper we shall show a method that reliably calculates the number of required clusters and that utilizes spatial 
based proximity information embedded within the Delaunay tessellation (Delaunay, 1934) of the event set to 
improve performance to O(n log n). Since code to construct a spherical Delaunay tessellator had already been 
developed for the GNEMRE program, only the K-Medoid clustering algorithm needed to be developed. 
 

Approach 

To proceed with the discussion of the clustering approach we shall assume an initial distribution of geo-referenced 
events located in an unstructured fashion anywhere on the surface (or near surface) of the Earth. Our goal shall be to 
find clustered sets of those events that share close spatial proximity and are no more distant from one another (in a 
cluster) than some user prescribed distance Dmax. We shall call Dmax the desired cluster size parameter. The set of 
discovered clusters shall be returned as an array of cluster objects each containing a list of one or more events, 
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which defines the cluster’s event set, and a single event, the cluster representative, which signifies the best 
characterization of the cluster. 
 
Before proceeding further we shall define the concepts of an event group, the maximum span of a cluster, and a 
consistent cluster which will be used repeatedly in the discussion that follows: 
 

a) A group of events (or event group) shall be defined such that for any event contained in the group there is a 
closest neighbor event, also contained in the group that is never further away than some distance Dmax. Or 
conversely, two event groups are distinct if all events in the first group are further away than Dmax from all 
events in the second group. 

b) The maximum span of a cluster is defined such that no event in any arbitrary cluster is further away than 
Dmax from any other event in the same cluster. 

c) A cluster is said to be consistent if all events contained by an arbitrary cluster are closer to the clusters 
representative event than to any other representative in the remaining set of adjacent clusters of the event 
group. 

 
The clustering approach defined in this paper begins by identifying isolated event groups from the initial set of 
globally distributed events. Next, each event group is processed sequentially by sub-dividing the group into an initial 
“best” guess of consistent clusters where the number of clusters is chosen in a minimalist way while still 
guaranteeing that the maximum span of each cluster is not violated. Finally, the group is processed using a top-down 
k-medoid algorithm to find the best set of cluster representatives for the group. 
 
The remaining pages of this paper shall describe the process in reverse order. First we will describe the k-medoid 
optimization assuming an event group has been found and an initial set of clusters and representatives have been 
assigned. Next we will describe small fix-ups to handle the rare cases where poor quality clusters are formed and 
events are assigned to inappropriate clusters. Then we will return to describe the method for forming the initial best 
guess of clusters and their representatives given an arbitrary event group. Finally, we will describe the process for 
forming event groups given the initial distribution of globally geo-referenced events. 

The K-Medoid Optimization 
 
The K-Medoid clustering optimization algorithm attempts to improve an initial clustering definition for an event 
group that has been decomposed into a consistent set of initial “best” 
guess clusters. Figure 1 illustrates an example event group composed 
of 4 initial clusters whose initial representatives are outlined in red 
circles. The sequence of optimization steps for this example are shown 
in Figure 2a-d. The optimization heuristic operates by iteratively 
discovering a new set of representatives for the clusters that globally 
minimizes  
       
                                                                         (1) 
 
where the sum is taken over all events (Np) in the event group. The 
value dki represents the distance between the ith event and the kth 
cluster representative. The weights can be used to influence the 
minimization by defining a criterion that represents something other than proximity. For purposes of the remainder 
of this paper the weights will be assumed to be one for all events such that M(C) is strictly proximity based. 
 
We intend to find the global minimum subject to two constraints: 

a) No event-to-event distance span in the cluster shall exceed the pre-defined maximum distance, Dmax, and 
b) No two clusters from the group can be combined to form a new cluster whose maximum span is also < 

Dmax. 
 
The first of these constraints is simply the definition, previously given, for the maximum allowable span of any 
cluster. The second definition is a similar attempt to control the minimum size of a cluster so that is not significantly 
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Figure 1. Event groups initial cluster 
definition. 
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smaller than Dmax. The first constraint is used during the optimization to prohibit new representatives from being 
formed that will cause an excessive span even if the value of M(C) is smaller given the new representative for some 
cluster. The second constraint ensures that adjacent clusters that can be represented by a single cluster, assuming the 
first constraint is not violated, are merged into a single cluster reducing the total number of clusters in the group by 
one. 
 
With the aforementioned constraints and definitions we define the K-Medoid optimization as follows: 
 

Given an initial set of representative clusters, fixed in number, from an arbitrary event group, exchange  
non-representative events with representatives until a reduced value for M(C) is discovered. When a more 
optimum event is discovered swap the old representative with the new event and continue with the next event in 
the group repeating the test. Continue until none of the non-representative events reduces the value of M(C) 
more than the current set of representatives subject to the previously defined constraints. 
 

 
 

 
Figure 2a shows an arbitrary iteration of the algorithm where event ni is to be tested to see if it is a better 
representative for cluster j than its current representative. The change in M(C) caused by replacing the current 
representative of cluster j with event ni is composed of two components. These components include: 
 

a) Those events that currently belong to clusters other than j but are transferred to cluster j’ when event ni 
becomes its representative (let j’ be the jth cluster when event ni is made its representative); and 

b) The original events of cluster j which may remain in cluster j’ or may be transferred to other clusters when 
event ni becomes the new representative. 

 
Let’s examine events of type a) first. For our example only one event, nα, is transferred from a non-j cluster to 
cluster j’ when ni becomes the representative of cluster j’. The net change in M(C) as a result of the transfer of nα 
into cluster j’ is composed of the additional contribution of assigning nα into cluster j’ minus the removal of the 
contribution from the cluster that currently contains nα. We’ll let r(α) be the index of the cluster containing nα 
before the swap. This net change in M(C) is shown in Figure 2b. Because event nα lies closer to ni than its old 

Cluster Representatives 

Cluster j 

Representative j (Cj) 
Event ni 

Cluster j 

Representative j (Cj) 

Event nα 

- 

+ 

Cluster j 

Representative j (Cj) Cl RepresentaCluster j’ Representative j’ (Cj’=i)

b) 

c)  

a)  

d) 

Figure 2 An example of the K-medoid optimization process. 
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representative (that is why it is being transferred) the net result is always negative. For this reason, events of type a) 
that occur in a k-medoid swap tests always produce a reduction in M(C).  
 
For events of type b) we need to examine the contributions to the change in M(C) from all of the events that reside in 
the current cluster j. In our example problem shown in Figure 2c, four of the original cluster j events will remain in 
cluster j’, while two of the original events will be moved to nearby adjacent clusters. The net change in the value of 
M(C) is caused by the loss of all contributions of cluster j events with the cluster j representative (red arrows) and a 
gain due to the reattachment of cluster j events with the cluster j’ representative or other representatives other than j’ 
(blue arrows). We can write these contributions over all cluster j events as 
 
                          (2) 
 
where β is taken over all original events of cluster j. The new reassignment cluster indices are contained in m(β) for 
each event in cluster j. 
 
The total change in M(C) is given by summing changes from both case a) and case b) which gives 
 
                              (3) 
 
If the change in δM(C) is < 0.0 then event ni represents a more optimum cluster representative than does the original 
cluster representative Cj and a swap is performed. This case is illustrated in Figure 2d. If, however, δM(C) is > 0.0 
then representative Cj is better and the swap is not performed. In either case the algorithm advances to the next event 
ni for further testing. The algorithm halts when no further swapping occurs after a complete pass through all events 
in the group. 

K-Medoid Optimization Constraint Satisfaction 
 
As previously discussed the k-medoid optimization is constrained to 
avoid clusters with spans that exceed Dmax or spans that are 
unnecessarily small (much less than Dmax / 2). In the first case we 
enforce the constraint by ensuring that representative swaps are not 
performed during optimization if the swap results in a cluster whose 
span exceeds Dmax. Figure 3 illustrates a case of two clusters before 
testing an event as a replacement representative for the topmost cluster. 
Notice that both clusters have a span that is less than Dmax before the 
test. 
 
Following the test the event is found to reduce M(C) (assume for the 
sake of the example) which results in the migration of an event from 
the cluster containing the test event to the lowermost cluster in order to 
ensure cluster consistency requirements (events must reside in the 
cluster for which they are closest to the clusters representative). 
However, as shown in Figure 4 the event migration results in a span 
that exceeds Dmax. For this case the swap is disallowed and the 
original configuration before the test is restored. 

( ) ( )∑∑ −−−=−′ ′
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βββ
β
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( ) ( )∑∑ −′+−′=
α

αααα
β
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Span = 

Before 
Test

Test 
Representative

Figure 3. Adjacent cluster pairs before a 
test representative swap. 
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The second constraint is satisfied by attempting to merge adjacent clusters with one-another during the optimization 
process. If two clusters can be merged, as shown in Figure 5, where the resulting merger produces a new cluster 
whose span is still less than Dmax then the merger is processed. The net result reduces the cluster count by one which 
generally increases the intra-cluster spacing.  

 

Poor Quality Cluster and Event Assignment Corrections 
 
Given the imposition of the constraints on the k-medoid optimization, accompanied by sometimes poorly correlated 
local spatial distributions, we find that the algorithm will, in rare circumstances, form poor clusters or  
event-to-cluster assignments. Sometimes it is better to have a slightly larger value for M(C) if the result leads to a 
more favorable assignment of events to their respective clusters. Two different types of quality issues can arise. The 
first occurs when a poor quality cluster is formed. The other occurs when an event assignment is constructed with a 
cluster with which it is poorly correlated and a better choice is available. We have developed and implemented 
algorithms to deal with both, but do not have space to provide details in this paper. 

Event Group Initial Cluster Definition 
In the previous sections we examined the k-medoid clustering algorithm, some of the constraints under which it 
operates, and some quality correction issues that can occur under rare circumstances. In this section we shall go back 
to the beginning to answer the question of how to form an initial set of clusters from a given event group. It is this 
initial cluster definition upon which the k-medoid algorithm operates. In the next section we will answer the 
question of how to form event groups given a set of events distributed in an arbitrary unstructured fashion around 
the globe. 
 
As mentioned earlier, part of the problem with medoid- and mean-based clustering algorithms is how to define the 
number and configuration of the clusters given an arbitrary point set. Although the k-medoid algorithm can find the 
best set of N clusters in a group of events it has no way to ascertain what N should be. It must be provided.  
 
For our specific problem we are interested in determining the number of clusters necessary to represent the events in 
a group given some desired size, Dmax, for each cluster. Here we shall define a method of approximating the cluster 
count and initial distribution using a medial axis sub-division scheme. As before, let the span of a cluster be the 
largest distance between any two events in the cluster. If the span of a cluster exceeds Dmax then sub-divide the 
cluster into two new sub-clusters. In turn, evaluate each of the new sub-cluster spans. If one or both still exceed Dmax 
then one or both are also split into two new sub-clusters. This process is repeated recursively until the newly formed 
sub-cluster pairs are defined by a set of events whose span is less than or equal to Dmax. 
 

Figure 4. Adjacent cluster pairs 
following a representative 
swap resulting in an 
excessive span. 

Figure 5.  Adjacent cluster merge reducing the cluster count by 
one. 
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The best way to sub-divide the events into sub-cluster pairs is to simply split the clusters event set along a line  
(or plane in 3-space) that is orthogonal to the line (or plane) that defines the clusters span and positioned so that it 
contains the spans mid-point. This new splitting axis is called the medial axis of the span. The sub-division process 
is illustrated in Figures 6a through 6c. 

 
 
The span axes are denoted in blue while the medial axes are shown 
in red. Notice that the medial axis effectively sub-divides the cluster 
into two new clusters that lie on opposite sides of the medial axis. A 
simple test (scalar triple product in 3-space) can be used to 
determine which side of the medial axis an event lies. Events lying 
on either side of the medial axis are inserted into two new sub-
clusters and the original cluster is removed (deleted). In the 
example above the original set of events in the group are subdivided 
into 4 sub-clusters whose spans are all less than Dmax. 
 
The previously described decomposition of the original event group 
into a set of clusters whose spans are all less than Dmax determines 
the initial number of clusters that will be provided to the k-medoid 
clustering algorithm. However, it has not defined the best 
characteristic representative for each cluster which must be accomplished before performing the k-medoid 
optimization. This is done by simply performing a local optimization test for M(C) on each event in each cluster. 
The one that minimizes M(C) for each cluster is chosen as its representative. Figure 7 shows the result given the 
final clusters shown in Figure 6 above. 
 
The final step before entering the k-medoid optimization algorithm is to 
ensure that the initial clusters are all consistent. This means that we must 
check each cluster to ensure that all events owned by the cluster are closest 
to that cluster’s representative than to any other representative in the 
remaining clusters. For our example three events are found to be 
erroneously assigned within other clusters and must be reassigned. These 
reassigned events are shown in Figure 8. 
 
Once the reassignment operation is complete we have a consistent set of 
clusters whose spans are all less than Dmax. This set of clusters is provided 
to the k-medoid algorithm to find the best set of representatives for the 
entire group. 

a) Initial Event Group Point Set and 
Maximum Span Definition 

b) Span is Excessive … Perform 
Medial Axis Subdivision Creating 
Two New Clusters … Recheck 
Spans 

c) Spans Still Excessive … Perform 
Medial Axis Subdivision on Both 
Clusters Creating Four New 
Clusters … Recheck Spans 

Span 

Medial Axis 

Initial Cluster 
Representatives 

Reassigned 
Events 

Figure 6. Medial-axis sub-division of an initial event group into 4 sub-clusters all of whose spans are < Dmax. 

Figure 8. Event reassignment required 
to preserve cluster 
consistency. 

Figure 7. Event group initial cluster 
representative formations. 
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Event Group Discovery 
 
We can now answer the final question of how to efficiently construct event groups given the raw event data 
distributed in an unstructured manner over the entire Earth’s surface (near). Here we shall make direct use of the 
nearest neighbor information contained in a Delaunay tessellation of the raw event positions. 
 
Since we already have code to construct a spherical Delaunay tessellator we need only input the event positions and 
build the tessellation. Figure 9 below shows the resultant edge connectivity between ISC catalog events for the year 
2000 with depth <= 33 km and mb >=3.0. The input set contains 22,766 events. The small white square near Greece 
will be shown in the remaining figures to illustrate the process steps.  
 
Event groups are defined by finding connected sets of events where the distance between neighboring events in the 
connected set is less than Dmax. This can be accomplished in order O(n) time using the topology of the Delaunay 
tessellation. The algorithm simply picks the first unmarked node (event) in the tessellation. By marking we are 
simply setting a flag to indicate that the node has been visited. If the node is already marked we proceed to the next 
node. This continues until no unmarked nodes remain. 
Any unmarked nodes are processed by first marking the node as having been visited and adding it into a new event 
group. We then add the node to a stack. Next the algorithm enters a loop processing all nodes in the stack until it is 
empty. The stack processing begins by first popping the next node off of the stack which is taken as the current 
process node. Then we loop over each edge of the node (the tessellation topology stores this information) and check 
the edge length to see if it is less than or equal to Dmax. If it is and the node opposite the current process node on the 
edge has not been flagged as visited we mark it as such and add that opposite node to the stack and to the current 
event group (a cluster). This continues for each edge of the current process node. Finally the algorithm checks to see 
if any nodes remain in the stack and loops to obtain the next current process node if the stack is not empty. 
 
When the stack is empty the algorithm returns to the outer loop over all tessellation nodes to find the next unmarked 
node. When no unmarked nodes remain the event groups have all been discovered. Each group consists of one or 
more events. We can best visualize these by turning off all edges that exceed Dmax. This is shown in Figure 10 for a 
Dmax value of ½ degree. The groups are highlighted with an outlined yellow curve to aid in their visualization.  
  
Event groups whose total span is less than Dmax form completed clusters. Groups whose span exceeds Dmax must be 

processed by the medial-axis sub-division algorithm to form initial consistent clusters which are further processed 
by the k-medoid clustering algorithm to find the best set of representatives in the group. 

Figure 9.  22,766 spherically tessellated events from the ISC catalog. 
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In Figure 10 all isolated events and groups of 
2 events are immediately considered as 
completed. The remaining groups must be 
processed by the medial-axis subdivision and 
k-medoid algorithms. The result of that 
processing is shown in Figure 11. The cluster 
representatives are outlined in white while 
the clusters are signified by the red circles 
centered on the maximum span of each 
cluster. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 11. Magnified region depicting final cluster formation following group formation, initial cluster definition, 
and k-medoid optimization. White circles represent cluster representatives. Red circles are Dmax in 
diameter centered on cluster maximum spans.  For clarity, single event groups are shown as white 
diamonds. 

Figure 10.  Local event groups and isolated events in the 
magnified region. 
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The final total clustering algorithm can be summarized in pseudo-code as follows: 

a) Tessellate raw event globally on a sphere 
b) Decompose events into groups whose neighbor separation is < Dmax 
c) Move groups whose span is < Dmax into a completed cluster list (includes isolated events) 
d) For each remaining incomplete event group: 

 
• Decompose group into a set of sub-clusters using the medial-axis 

sub-division algorithm 
 

• Peform k-medoid representative optimization on entire group 
 

• Fix poor quality clusters and event assignments 
 

• Add each optimized sub-cluster to the completed cluster list 
 

 

CONCLUSIONS AND RECOMMENDATIONS 

We have described a proposed alternative to the standard fixed grid algorithm for clustering seismic events which 
eliminates the primary drawbacks of that methodology. The new approach uses a well known k-medoid optimization 
algorithm for finding optimized clusters in unstructured data. Additionally, our approach takes advantage of the 
Delaunay tessellation capability already developed for the GNEMRE program, and it has performance capabilities 
that are more than acceptable for the largest problems currently under consideration. 
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